На страницу о книге «Электронная техника. Начало»

Москатов Е. А. Книга «Электронная техника. Начало»


3. Полупроводниковые диоды

3.1. Конструкция и основные параметры полупроводниковых диодов

3.1.1. Общие сведения о полупроводниковых диодах

Полупроводниковый диод – это обычно полупроводниковый нелинейный компонент с двумя выводами, обладающий свойством односторонней проводимости, и имеющий электронно-дырочный переход. В этом определении важно слово «обычно», так как некоторые разновидности диодов не обладают свойством односторонней проводимости (туннельные диоды) и не имеют электронно-дырочного перехода (диоды Ганна). Такие диоды, кстати, нами уже были рассмотрены.

Идеальный полупроводниковый диод допускает протекание бесконечно большого прямого тока и выдерживает бесконечно большое обратное напряжение. Это отражено на вольтамперной характеристике, изображённой на рис. 3.1.


Рис. 3.1. ВАХ идеального диода


Идеальных диодов на практике не бывает. Реальный диод всегда имеет конечную величину обратного напряжения, после чего наступит электрический пробой, и вполне определённый максимальный прямой ток, превышение которого вызовет тепловой пробой. Вольтамперная характеристика реального диода дана на рис. 3.2.


Рис. 3.2. ВАХ реального диода


Диоды, выполненные на основе кремния, имеют меньшую величину обратного тока и более высокую максимально допустимую температуру кристалла, чем германиевые диоды. Однако падение напряжения на кремниевых диодах в прямом включении примерно в два раза выше, чем на германиевых диодах.

Анодом диода называют вывод от той области электронно-дырочного перехода диода в прямом включении, к которому подсоединяют положительный полюс источника питания. А вывод от области, к которой подключают отрицательный полюс источника питания, именуют катодом.

КПД диодов может в отдельных случаях достигать 99%, т.е. обычно он весьма велик.


3.1.2. Конструкции и простейшие способы изготовления полупроводниковых диодов

Для получения простейшего точечного диода берут пластинку металла с прикреплённым к ней выводом и к ней приваривают кристалл полупроводника электронного типа проводимости. Этот кристалл называют базой диода. Затем берут металлическую иглу с присоединённым к ней выводом, изготавливаемую, например, из вольфрама, золота, бериллиевой бронзы, на которую нанесён легирующий материал, и её острый кончик упирают в кристалл базы диода так, чтобы игла была подпружинена. В качестве легирующего материала часто используют алюминий и индий. Все части будущего диода помещены в корпус, который, например, может быть маленьким стеклянным баллоном, из которого откачан воздух. Далее осуществляют формовку, то есть местное нагревание участка между иглой и полупроводниковой пластиной для того, чтобы на небольшой площади их материалы друг в друга диффундировали. Для этого через диод в прямом и обратном направлениях пропускают короткие импульсы с силой тока около 1 А, что во много раз превышает максимальный постоянный ток изготавливаемого точечного диода. Материал акцепторной примеси, который находился на игле, и тот, из которого она состояла, диффундируют на небольшой почти полусферический участок в базу диода, образуя переход. Точечные диоды благодаря небольшой площади электронно-дырочного перехода обычно обладают малой ёмкостью, а, следовательно, могут работать на высокой частоте, не теряя свойства односторонней проводимости. Однако малая площадь перехода не позволяет пропускать через точечный диод большие прямые токи без разрушения компонента.

Для изготовления плоскостного диода берут базу диода электронного типа проводимости и кладут на неё полупроводниковую пластину, которая позже станет играть роль акцепторной примеси. Затем их нагревают примерно до 450 °C … 550 °C в вакууме, отчего материал акцепторной примеси диффундирует в базу будущего диода. Полученный электронно-дырочный переход будет обладать большой площадью и существенной ёмкостью. Благодаря тому, что площадь плоскостного диода велика, через него можно пропускать весьма большой ток в прямом включении, однако наибольшая частота, на которой такой диод может сохранять работоспособность, будет низкой.

В заключение нужно отметить, что существуют и многие другие конструкции, а также способы изготовления диодов.


3.1.3. Некоторые основные параметры полупроводниковых диодов

К основным параметрам диодов относят:


3.2. Выпрямительные диоды

Выпрямительным называют диод, который предназначен для получения однополярного пульсирующего напряжения путём выпрямления переменного напряжения. Полученное пульсирующее напряжение сглаживают, например, конденсатором, в итоге получая постоянное напряжение. Выпрямительные диоды изготавливают по технологии получения плоскостных диодов в связи с тем, что их обычно используют на низких частотах, а прямой ток через электронно-дырочный переход зачастую составляет многие амперы. Маломощные выпрямительные диоды способны успешно рассеивать выделяющееся в них тепло исключительно своим корпусом, в то время как мощные диоды иногда этого сделать не могут, по причине чего их монтируют на охладители. Выпрямительные диоды выпускают как дискретными компонентами, так и объединёнными в диодные сборки.

Если обратное напряжение, прикладываемое к выпрямительному диоду, будет больше максимально допустимого для конкретной марки компонентов, то для предупреждения развития пробоя несколько диодов соединяют последовательно. Сопротивление диодов в обратном включении весьма различно даже для компонентов одной марки и партии. Чтобы избежать превышения допустимого значения обратного напряжения на том диоде, сопротивление которого наиболее велико, каждый из последовательно соединённых диодов шунтируют высокоомным резистором. Это позволяет выровнять обратные напряжения на всех диодах.

Если прямой ток, протекающий через диод, будет больше максимально допустимого для конкретной марки диодов, то для предотвращения выхода из строя несколько диодов соединяют параллельно. Сопротивление диодов даже одной марки и партии в прямом включении иногда имеет существенные различия. Чтобы избежать превышения допустимой силы прямого тока на том диоде, сопротивление которого наиболее низко, последовательно с каждым из диодов включают по низкоомному резистору. Это позволяет выровнять силу прямых токов, протекающих по всем диодам.


3.3. Импульсные диоды

Импульсными называют диоды, предназначенные для пропускания в прямом включении очень коротких импульсов, длительностью менее микросекунды, с большой амплитудой тока. При столь коротких импульсах основное влияние на работу диода будут оказывать барьерная ёмкость и длительность обратного восстановления, обусловленная скоростью рекомбинации носителей заряда. Барьерная ёмкость некоторых импульсных диодов может быть ниже 1 пФ. Импульсные диоды, функционирующие на частоте примерно 1 ГГц, часто обладают точечной конструкцией. Также импульсные диоды изготавливают планарной, меза–планарной, сплавной и сварной конструкций. Пусть через импульсный диод протекает электрический ток в прямом включении. Если резко изменим полярность приложенного напряжения, то диод мгновенно не перейдёт в закрытое состояние, а вначале существенно возрастёт обратный ток, обусловленный наличием на участке электронно-дырочного перехода повышенной концентрации неосновных носителей заряда. Затем обратный ток начинает снижаться почти по экспоненте ввиду рекомбинации неосновных носителей зарядов и их миграции через электронно-дырочный переход, по окончании чего обратный ток установится на определённом уровне.

Импульсные диоды применяют в электронных ключах, генераторах, модуляторах и формирователях импульсов и пр., причём длительность периода импульсов может быть даже меньше нескольких пикосекунд. Такие диоды используют, например, в демпферах и выходных выпрямителях импульсных источников питания, причём прямой ток через открытые диоды может достигать десятков ампер, а частота – сотен килогерц.


3.4. Варикапы

Барьерная ёмкость диодов, в противоположность диффузионной ёмкости, мало зависит от частоты сигнала и температуры электронно-дырочного перехода. Величина барьерной ёмкости зависит от зарядов ионов легирующего вещества. При обратном включении диода возрастает ширина потенциального барьера, отчего барьерная ёмкость снижается. Варикапом называют полупроводниковый диод, спроектированный так, чтобы была высока его добротность, а барьерная ёмкость была стабильна при флюктуациях частоты и температуры. Чем больше постоянное обратное напряжение, приложенное к варикапу, тем меньше его барьерная ёмкость. Важнейшая характеристика варикапов – вольт-фарадная – отражает зависимость барьерных ёмкостей варикапов от обратных напряжений. Наличие такой зависимости позволяет использовать варикапы в колебательных контурах в качестве перестраиваемой ёмкости.

Барьерную ёмкость варикапа отражает следующая формула:

Cв = (S • ε • ε0) / (d • √(1 – U / φ0)), Ф,

где S – площадь электронно-дырочного перехода, м2;

d – протяжённость электронно-дырочного перехода, м;

ε – диэлектрическая проницаемость полупроводника;

ε0 – диэлектрическая проницаемость вакуума;

U – напряжение, приложенное к варикапу, В;

φ0 – высота потенциального барьера.

Добротность варикапа допустимо вычислить согласно формуле:

Q = 1 / (2 • π • F • r • Cв),

где F – частота сигнала, Гц;

r – сопротивление той области полупроводникового кристалла варикапа, в которой минимальна концентрация примесей, Ом;

Cв – барьерная ёмкость варикапа, Ф.

Коэффициент перекрытия по ёмкости варикапов, равный отношению максимальной ёмкости к минимальной ёмкости, достигает 3 … 7 раз для компонентов с высокой начальной ёмкостью, и 20 … 30 для некоторых специальных приборов. Часто для перестройки диапазонов многоконтурных приёмников необходимо несколько объединённых друг с другом определённым образом варикапов. Такие наборы из нескольких варикапов, заключённые в единый корпус, называют варикапными матрицами. Промышленность выпускает и дискретные варикапы, и варикапные матрицы. Варикапы широко используют для перестройки колебательных контуров диапазонов КВ и УКВ в радиовещательных и телевизионных приёмниках.


3.5. Стабилитроны и стабисторы

Полупроводниковыми стабилитронами называют плоскостные диоды, которые применяют для поддержания на неизменном уровне обратного постоянного напряжения, приложенного к запертому стабилитрону. При изучении пробоев электронно-дырочных переходов было отмечено, что при зенеровском и лавинном пробоях падающие на диодах обратные напряжения почти постоянны в широких диапазонах обратных токов. Зенеровский пробой присущ стабилитронам с низким напряжением пробоя, а лавинный пробой – стабилитронам с высоким напряжением пробоя. Так как во время указанных пробоев в электронно-дырочных переходах выделяется тепло, которое увеличивает температуру кристаллов, применяют полупроводники, обладающие высокой температурной стабильностью, при использовании которых обратный ток будет мал. С другой стороны, указанные пробои возникают при довольно низких обратных напряжениях, ввиду чего рассеиваемая мощность полупроводниковых стабилитронов не велика.

Стабилитроны изготавливают из кремния электронного типа проводимости, который легируют акцепторной примесью. Для этого в пластинку кремния обычно вплавляют алюминий, к материалам областей электронно-дырочного перехода подсоединяют выводы, всю систему помещают в корпус, который герметизируют. Корпуса стабилитронов обычно стеклянные, металлостеклянные или металлопластиковые.

Важным параметром стабилитронов выступает температурный коэффициент напряжения (ТКН) стабилизации, который отражён следующей формулой:

ТКН = (ΔUст / (ΔT • Uст)) • 100, %/град,

где ΔUст – наибольшее изменение напряжения стабилизации, В;

ΔT – наибольшее изменение температуры, град;

Uст – номинальное напряжение стабилизации при номинальном обратном токе, В.

Стабилитронам с лавинным пробоем характерно обладание положительным ТКН, т.е. при фиксированном обратном токе с ростом температуры полупроводникового кристалла обратное напряжение возрастает. Стабилитронам с зенеровским пробоем свойственно наличие отрицательного ТКН, т.е. при стабильном обратном токе с ростом температуры кристалла полупроводника обратное напряжение уменьшается.

Вольтамперная характеристика стабилитрона в области прямого включения не имеет отличий от других диодов, а в области обратного включения лежит участок, на котором при значительном изменении обратного тока практически постоянно обратное напряжение. Это отражено на рис. 3.3, на котором изображена вольтамперная характеристика типового стабилитрона.


Рис. 3.3. ВАХ стабилитрона


Стабилитроны применяют для ограничения импульсов, с целью поддержания опорного напряжения на постоянном уровне в параметрических стабилизаторах, для защиты цепей от превышения напряжения и прочих целей.

Стабисторами называют диоды, которые применяют для поддержания на неизменном уровне прямого постоянного напряжения в прямом включении. Обычно в качестве полупроводника для изготовления стабисторов применяют селен. Стабисторы используют для стабилизации постоянного напряжения, величиной от долей до нескольких вольт. Для увеличения напряжения пробоя стабисторы часто включают последовательно. Стабисторам свойственна отрицательная величина ТКН, и при их последовательном соединении с лавинными стабилитронами может быть достигнута некоторая независимость напряжения пробоя системы от температуры.

Время непрерывной работы отдельных марок кремниевых стабилитронов до выхода из строя превышает несколько десятков тысяч часов, а селеновых стабисторов обычно не достигает и тысячи часов из-за деградации полупроводника.


3.6. Светодиоды

Светодиодом называют такой полупроводниковый компонент, в котором рекомбинацию носителей зарядов сопровождает испускание квантов некогерентного света. При протекании тока через светодиод в прямом включении электроны преодолевают электронно-дырочный переход и рекомбинируют, переходя на более низкие энергетические уровни и испуская кванты света. Для изготовления светодиодов пригодны далеко не всякие полупроводники, а только групп AIIBVI и AIIIBV, такие как арсенид галлия, фосфид индия и прочие. Подходящие полупроводники имеют достаточно широкую запрещённую зону, чтобы длина излучаемой волны лежала в заданной области спектра. К наиболее важным характеристикам светодиодов относят спектральную и яркостную характеристики. Спектральная характеристика – зависимость вырабатываемой мощности светового потока от длины волны. А яркостная характеристика – это зависимость мощности светового потока от силы тока, протекающего по светодиоду в прямом включении.

К достоинствам светодиодов относят механическую прочность, длительное время наработки на отказ, часто превышающее десять тысяч часов, низкое прямое напряжение, составляющее до нескольких вольт, малую стоимость, возможность функционирования в широком диапазоне температур. Технология изготовления светодиодов не подразумевает обязательного использования сильно токсичных веществ, что также относят к достоинствам.

Недостаток индикаторных светодиодов для аппаратуры широкого потребления заключён в обычно невысоком КПД, составляющим от долей до нескольких процентов.

Светодиоды используют для индикации состояния аппаратуры, а мощные светодиоды применяют для освещения.


3.7. Полупроводниковые лазеры

Лазером называют квантовый генератор монохроматического излучения оптического диапазона волн. Рабочее тело лазеров может быть выполнено:

Полупроводниковые лазеры используют, например, для производства лазерных диодов. Основой лазерного диода выступает специально подготовленный электронно-дырочный переход плоскостной конструкции, полученный в полупроводнике электронного типа проводимости, например, из арсенида галлия. Кристалл полупроводника обычно имеет размеры по длине, ширине и высоте менее 500 × 400 × 100 мкм. Упрощённая конструкция лазерного диода без соблюдения пропорций показана на рис. 3.4.


Рис. 3.4. Конструкция лазерного диода


Грани пластинок полупроводника, между которыми образован электронно-дырочный переход, образуют резонатор Фабри-Перо, и играют роль зеркал для попавших в него фотонов, которые будут отражены от нескольких сотен раз до нескольких тысяч раз, прежде чем его покинут. Изначально концентрация электронов на верхних энергетических уровнях изначально ниже концентрации электронов на нижних энергетических уровнях. Если подсоединим лазерный диод к внешнему источнику питания в прямом включении, то возникнет инжекция электронов в область дырочной проводимости и их рекомбинация на границе электронно-дырочного перехода, который обладает протяжённостью часто менее 2 мкм, сопровождаемая выделением квантов света – фотонов. Концентрация электронов на верхних энергетических уровнях возрастает и начинает превышать концентрацию электронов на нижних энергетических уровнях. Произойдёт множество отражений от резонатора, в течение которых индуцирующие фотоны инициируют ещё большее увеличение рекомбинации и породят новые индуцированные фотоны. Таким образом, фотоны образуют монохроматическое световое излучение «L», которое через окно в корпусе покидает лазерный диод.

Следует заметить, что лазеры используют почти всецело для генерации, но не для усиления колебаний. Лазерные диоды нашли широкое применение в спектрографах, лазерных прицелах и дальномерах, их применяют в лазерных принтерах и в медицинских приборах для исследования сетчатки. Лазерные диоды входят неотъемлемой частью системы считывания, стирания и записи информации на лазерных дисках.


3.8. Фотодиоды

Фотодиодом называют фотогальванический приёмник с электронно-дырочным переходом, облучение которого светом вызывает увеличение силы обратного тока. Материалом полупроводника фотодиода обычно выступает кремний, сернистое серебро, сернистый таллий или арсенид галлия. Фотодиод устроен так же, как обычный плоскостной диод, а отличие состоит в прозрачном окне, которое организовано в корпусе фотодиода напротив областей электронного либо дырочного типов проводимостей в полупроводниковом кристалле. Таким образом, через это окно свет попадает внутрь фотодиода и облучает одну из областей электронно-дырочного перехода. Фотодиоды могут быть использованы в одном из двух включений: вентильном или фотодиодном.

Рассмотрим фотодиодное включение компонента. Последовательно с фотодиодом включим нагрузочный резистор и источник питания, подсоединённый плюсом к катоду фотодиода, а минусом к аноду. Пока облучение окна отсутствует, через фотодиод протекает маленький обратный ток Ф0, который называют темновым током, силой от единиц до нескольких десятков микроампер. Это отражено на вольтамперной характеристике фотодиода, показанной на рисунке 3.5.


Рис. 3.5. ВАХ фотодиода


Облучим кристалл слабым световым потоком, к спектру которого будет чувствителен фотодиод, отчего возникнет генерация электронов и дырок, и обратный ток станет больше (Ф1 > Ф0). Ток, протекающий через нагрузочный резистор, возрастёт. Если световой поток станет ещё значительнее, то соответственно возрастёт и обратный ток фотодиода (Ф2 > Ф1). Пропускаемый по нагрузочному резистору ток станет ещё существенней. Очевидно, что сила тока, протекающего по резистору, и падение постоянного напряжения на нём зависят от величины светового потока.

В вентильном включении внешний источник питания не используют, а к выводам фотодиода подсоединяют нагрузочный резистор. Под действием светового потока возникает фотогенерация носителей заряда и фото-ЭДС, на выводах фотодиода появляется постоянное напряжение. Это напряжение подводят к нагрузочному резистору, через который течёт электрический ток.

Фотодиоды обладают продолжительным сроком наработки на отказ, высокой чувствительностью к регистрируемому излучению, обладают малыми массой и габаритами.


Яндекс.Метрика

Hosted by uCoz